
8 .,’

1.
.

*.

4

Time Parallel Solution of Linear

Partial Differential Equations

on the Intel Touchstone Delta Supercomputer

Nikzad Toomarian

Amir Fijany

Jacob Barhen

Center for Spaw h~icro(’lctrol~ics” Technology

.Jet Propulsion Laboratory

California Institute of Technology

4800 Oak ~1’OW Dr., MS 303-310

Pasadc’lla.C.A91109

contact -Author:

D!. Jacol) Barhen

Tel: 818-354-9218

Fax: 818-393-5013

E-mail: Barll(’ll!Ctl~il)s,jl)l.l~asa.gov

,

Sllbmittd to:

Concurrency

.Jldy 1993

*

Time Parallel Solution of Linear

Partial Differential Equations

on the Intel Touchstone Delta Supercomputer

Nikzad Toomarian, Amir Fijany and Jacob Barhen

Center for Space Microelectronics Technology

Jet Propulsion Laboratory

California Institute of Technology

Pasaclena, C.4 91109

Abstract

Evolutionary partial differential actuations are usually solved by discretization in time and

space, and by applying a marching in time procedure to data and algorithms potentially

--2
parallelized in the spatial domain. In a cleparture from such a strictly. sequential tem-

poral paradigm, we have developed the concept of tinle~~rgll~l__~~orithms, which allow-_..—

the marching in time to be fully parallelized. This is achieved by using a transforma-

tion based on the eigenvalue-eigenvector decomposition of the matrices resulting from the,--– -– -..—-.
discretization process. Since these matrices are involved in the time stepping iterations,

the resulting diagonalization yields ‘(time parallel” algorithms, i.e., algorithms that pos-

sess a highly decoupled temporal structure, and hence can be efficiently implemented on

emerging massively parallel MIMD architectures with a minimum of communication and

synchronization overhead. Specifically, our algorithms have been implemented on the Intel

Touchstone Delta supercomputer. We have illustrated our approach on a two-dimensional

heat equation, and have demonstrated that a linear speedup can be achieved and main-

tained, even for a very large number of processor nodes.

●

1. Introduction

A large variety of physical phenomena can be described by means of Partial Differential

Equations (P DEs)[l]. Generally, in most practical applications, an analytical solution

can not readily be formulated. Hence, numerical solutions of such equations are usually

considered. From such a perspective, the development of fast and accurate algorithms

has been extensively studied in the literature. In particular, recent advances in massively

parallel hardware architectures have provided a strong incentive to develop methodologies

that, from the onset, take full advantage of the available large scale parallelism.

The Intel Delta, Intel Paragon, and CRAY T3D are representatives of an emerging class

of massively parallel MIMD architectures. The main feature of this class of parallel ar-

chitectures is that while they provide a large number of very powerful nodes with vector

processing capability, they also possess a rather simple and limited communication struc-

ture (e.g., a mesh structure for the Delta). Therefore, such supercomputers are most

suitable for applications where coarse grain parallel algorithms with limited communica-

tion requirements can be developed.

It is widely believed that, in numerical solutions of time dependent PDEs, marching in

time is strictly sequential. Recently, however, we have developecl[2-5] a concept of time

parallel algorithms, which allows the marching in time procedure to be fully parallelized.

This is achieved by using a transformation based upon the eigenvalue-eigenvector decom-

position of the matrices resulting from the discretization process. Since these matrices are

involved in the time stepping iterations, the resulting diagonalization yields ‘lime parallel”

algorithms, i.e., algorithms that possess a highly decoupled structure and can, hence, be ef-

ficiently implemented on emerging massively parallel MIMD architectures with a minimum

of communication and synchronization overhead.

In this paper, we consider the solution of a linear parabolic ecluation in a bounded domain,

Without loss of generality, we limit oursel~~es to a homogeneous, two-climensional case with

Dirichlet boundary conditions. Extension to higher dimensions, nonhomogeneous, space

dependent coefficients, and different boundary conditions is being discussed elsewhere[2-5].

For the two-dimensional case under consideration, we take the domain to be a square of

length L, i.e., O s z < L and O < y < L. Hence, the parabolic PDE of interest is given as

811 ij~1, + 82V
—=cl(—
at 8%2

—)
ay?

(1)

The pertaining boundary and initial conditions are specified as follows:

where a is constant and t~ denotes the final time. Superimposing a uniform grid on

the domain, i.e., ~ = j x Az, 1 < j < N, y = i x Au, 1 < i s N, and assuming

A. = Ay = h = L/(N + 1), will result in discrete values, v~j, which approximate the

continuous values V(kAt, j h, i h). In the sequel, the grid points values of v will be referred

to either in terms of the N x N matrix ~~ij, or in terms of the N2 vector Vt, where

~=(i–l)x N+j, ancl l<i, j<N.

Using a three point central differencing approximation scheme for the spatial domain yields

a family of iterative methods, formalized as:

[1+ 2/36M]v’+1 = [1 - 2(1 - p)6M]v’ - %pv’+’ + (1 - B) V’] o<k<K (3)

In the above expression, 1 denotes the N2 x N* identity matrix, 6 = At /2h2, where At

is the magnitude of the time step, and 1{ = tj/At. The N* x .V2 matrix M arises from

the discretization of the second order spatial derivatives, and has a special structure, i.e.,

“tridiagonal with fingers”, as shown in Fig. 1. The AT2 vector V incorporates the time

dependent boundary conditions (see Fig. 2)., and has the explicit form:

v = [Vl,o + VI),l, V0,2, “ “ o,vo,N_l,vo,N + V1,N+l>

v~,l),o,..., (), UZ,N+I, 2<i<N–1 (4)

vN,O+Z~N+l,l,v~+l,*,..., vN+l, N-l> ~N+l, N + W,N+I]T

3

1

1

*

Finally, the constant ~ determines the implicit degree of the method. Three distinct

regimes can be considered in terms of @:

1- Explicit method, /? = O; then Eel. (3) becomes:

(5)

2- Implicit method, /? = 1; now Eq. (3) becomes:

3- Cranli-Nichcdson (C-N) method, ,0 = 1/2; in this case Eq. (3) can be written as:

(1 +6M)?J+1 = (1 - Nk@ - f5(v~+’ + v~) o<k<K (7)

The analysis of these methods in terms of stability, accuracy and domain of applicability

is outside the scope of this paper. In the sequel, we will focus our discussion on the C-N

method, with the understanding that the parallel algorithms presented in this paper are,

in principle, applicable to all three methods.

The marching in time procedure for solving the PDE, Eq. (1), is implied by the time

stepping k-iterations in Eqs. (5-7). Throughout this paper, the term space paTallel is used

for algorithms that exploit parallelism in the spatial domain only, while the term time

parallel refers to algorithms that exploit parallelism in the computation of all vectors Vk,

over the discrete time k-domain.

The time stepping formalism implied by Eqs. (5-7) appears to require strictly sequential

computation in time. A number of paradigms have been proposed to enable some level of

time parallelism. To date, however, only limited success has been reported [6- 11].

4

.

In this paper, we present a new class of time parallel algorithms that, for the type of

problems defined by Eq. (1), allows the time iterations in Eq. (3) to be completely

decoupled andperformed full yinparallel. Ourdecoupling isachieved bycasting Eq. (3)

into a diagonal form. Specifically, a transformation based on the eigenvalue-eigenvector

decomposition of the matrix M, reduces Eel. (3) to a set of First Order Linear Recurrences

(FOLR), which allows the solution for all time steps to be computed concurrently.

This paper is organized as follows. The novel time parallel algorithms are described in

Section 2. The best serial algorithm known to the authors is given in Section 3. The heat

equation, which is used as a specific illustrative framework for benchmarking the proposed

formalism, is presented in Section 4. The results of our numerical simulations on the Intel

Touchstone Delta supercomputer are given in Section 5. The conclusions summarize our

essential findings.

2. Time Parallel Algorithm Description

The time parallel algorithm we propose is

eigenvector decomposition of the matrix M,

see e.g., 13, p.349) the following theorems:

basecl on the derivation of the eigenvalue-

For completeness, we first recall (for proof,

Theorem 1. The

tridiagonal Toeplitz

eigenvalue-eigenvector decomposition of an N x N symmetric,

matrix @ = Z’ridiag[h, a, h] can be written as

The rows of the matrix O correspond to the normalized eigenvectors of the matrix ~,

with elements given by: . .

‘~~ = <~ ‘ill(N“: ~) (9)

The N x N diagonal matrix A involves the set of eigenvalues of the matrix ~, with

“t~ diagonal element given” by:the values of the 2

A2=U+21)COS(<)
N+l

(lo)

5

b

?

It should be noted that the matrix 6’ is the one-dimensional Discrete S,ine Transform (DST)

operator. Hence, it is a symmetric, orthonormal matrix, i.e., e=o~= o-1.

Now, let us consider a N2 x N2 block diagonal matrix @ = Dictg [8,0,... , 8], in whi& each

N x N block is given by Eel. (9). Furthermore, we define the N2 x N2 permutation matrix

P, as depicted in Fig. 3. The effect of applying P to the N2 vector with elements Vt, is

equivalent to transposing the N x N matrix with elements Vij, Since both matrices @ and

P are symmetric, we have @ = E)T = 0-1 and F’ = PT = P-l,

Theorem 2. The matrix M has an eigenvalue-eigenvector decomposition of the form:

in which W is a N2 x N2 block diagonal matrix. Each block, Qi, has a symmetric

tridiagonal Toeplitz structure given by Vi = Tridiug[-1, Ai, –1] where Ai is defined

by Eq, (10).

From Theorem 1 and the definition of 4 and ~, we can see that the eigenvalue-eigenvector

decomposition of T is given by

I’ = @A@ (12)

Here, the value of each element of the N2 x N2 cliagonal matrix A is computed according

to:

A4=4–2cos(&-2cos(#@ (13)

Where l=(i–l)x N+j, l<i, j<N.

By substituting Eq. (12) into Eq. (11), the eigenvector-eigel~value decomposition of the

matrix M can be written as:

M = @FWA@~@ (14)

Note that the definitions of @ and P imply that the matrix

(15)

is also symmetric and orthonormal, i.e., @ = @T = @-l,

6

*
a

*

Our time parallel algorithm is clerivecl by substituting Eqs. (14) and (15) into Eq. (7).

After some re-arrangement, one obtains:
.

@(l + 6A)@v~+] = Q(1 – 6A)@z)~ – 6(V~+l + @) (I < k < ~{ (16)

We now define

O = @t] (17a)

Furthermore, we introduce the N2 x N2 diagonal matrix D, with elements given by

Recalling the orthonormalit y of Q, i.e., @ = @-], and substituting Eels. (17) and (18) into

Eq. (16), we arrive the recurrence:

which represents a first order inhomogeneous linear system. The above expression is equiv-

alent to

At this stage, it is important to keep in mind that the superscript k generally stands for

the value at the iteration number k, except in the case of Dk where it stands for power (i.e.,

Dk means D to the power of k). If constant boundary conditions over time are assumed

(i.e., if # = ~, 1< k < K), one can simplify Ec~. (20) to:

(21)

Furthermore, if one assumes homogeneous boundary conditions, (i.e., d = O, 0< k < h’),

this equation will further reduce to:

7

\
,

When the boundary conditions are time dependent, the linear recurrence in Eq. (19)

can be solved in O(logl{) by using a conventional parallel algorithm [16]. However, for

time independent boundary conditions, ECI. (21) can be computed in parallel without

communication overheads, which preserves the fully decoupled structure of the algorithm.

From a computational complexity perspective, the time parallel algorithm for constant

boundary conditions can be summarized in the following three steps:

o

0

0

Transform the initial and bounclary conditions vector, i.e., compute

This step can be accomplished

forms on a single processor.

in 0(N2 log A’) multiply-accumulates, using fast trans-

Calculate each vector Ok using either Eel. (21) or Eq. (22). This step consist of N2

multiply-accumulates for each time step, L’.

Apply an inverse transform to the vector Ok, to obtain v~

v k
= m! lsk<Ii’

This step can be accomplished in 0(AT2log AT) multiply-accumulates for each time step

k, by using fast transforms, and assuming a single processor.

The overall computational complexity of the time-parallel algorithm on a single processor

machine is therefore 0(1{N2 log N). Because of the inherently decoupled structure of our

algorithm, this complexity scales as 0(‘(~’~~g~) on a system involving AIPprocessor nodes.

3. Best Serial Algorithm

In order to determine the ‘%est” serial algorithm for the problem uncler consideration, we

make the following observations. The coefficient matrices in Eqs. (5- 7) have a symmet-

ric, positive-definite, and sparse structure. This allows the use of rather generic iterative

methods such as SOR, conjugate gradient, etc. [14] for solving the corresponding linear

systems. More importantly, however, we note that these matrices also have structures

similar to those arising in the solution of the Poisson ecluation. In that sense, Eqs. (5-7)

represent a sequence of Poisson equations. Therefore, the so called Fast Poisson Solvers

can be used for the direct solution of the linear systems, Eels. (5-7), with a greater compu-

tational efficiency than the conventional iterative methods [15]. In the sequel, we consider

an improved version of the Matrix Decomposition algorithm of [23].

The computational complexity of such a “best serial algorithm” must be evaluated in a

framework consistent with the time parallel formalism. Hence, we note that this algorithm

is also based on the clecomposition of matrix ,!1. However, this decomposition is now

limited to that specified in Theorem 2. Substituting Eq. (11) into the C-N scheme, Eq.(7),

and rearranging the terms we arrive at:

OP(I + /Nv)PEh)k+l= 6P(I – (w)m+ o<k<K (23)

Using the orthonormality of@ and F’, ancl substituting Eel. (24) into Ec!. (23), one obtains

One can then rewrite Eq. (25) as follows:

Now, if one defines @~+ 1 = ti~+1 + ti~, the C-NTmethod can be recast as

(26)

(27)

9

~k+l _—

Thus, the best serial algorithm can

o Transform the vector of initial

This step can be accomplished

forms on a single processor.

~i)k+l _ ~L’ O< A’ <I<

be summarized in the following three steps:

conditions, i.e.,

ti” = P@O

in 0(N2 log AT) multiply-accumulates, using fast trans-

o Calculate the vector tit~ by solving tile linear system Eq. (27), and ti~ using Eq. (28);

repeat this for all time steps, k = 1, 2, . . . , 1{; the system of 0(N2) linear equations

(27) has a symmetric tricliagonal Toeplitz structure: hence, it can be solved in 0(N2)

steps.

o At each time step one needs to output the vector v~, which is obtained by applying

the inverse transformation to ti~:

,)~ = opfik l< L!<li-

This step can be accomplished in 0(.IV210g.h7) multiply-accumulates at each time step

k, again by using fast transforms.

Thus, the overall’ computational complexity of the best serial algorithm on a single pro-

cessor is 0(A_N210gN).

4. The Heat Equation

In order to provide a concrete framework for assessing the potential of our proposed ap-

proach to time parallelism, we focus our attention on a two-dimensional heat conduction

problem modeled by a linear parabolic PDE[l 2]. This problem has the advantage of ex-

hibiting both sufficient computational complexity, and possessing analytical solutions. This

enables a rigorous benchmark of the algorithms under consideration.

10

\

To fix the ideas, consider the problem of transient conduction in a long bar having a square .

cross section, of thickness L. The bar is assumed to be infinite in the z direction, so that

the heat profile will vary only in the z and y clirections. For simplicity, we furthermore

assume that the cross sectional temperature, u(i, r, y) is given at time i = O by

u(t, x, y) = sin(x/L) . sin(y/L) (29)

where O < x < L, O < y < L. The temperature of the bar at the boundaries is kept

constant, i.e.,

u(t, x,O) = u(t, z,L) = u(t, O,y) = u(t, L,y) = O (30)

Thus, the differential equation to be solved is:

au 82U 8221
— =cY(—
at ~.r2 + @ (31)

where the constant a is the thermal diffusivity. Since the initial temperature distribution

is a product of two functions, each of which involves only one of the independent space

variables, the solution to the Eel. (31) may be expressed as the product of two one-

dimensional, transient solutions, namely;

U(t,x,y) = X(t,z) . Y-(t, y) (32)

Substituting Eq. (32) into Eq. (31) and rearranging the terms will results in two one-

dimensional problems:

X(t, O) = X(t, L) = O

a“ &Y
Ot = oqp

(33)

Y(t, O) = Y(t, L) = O (34)

11

Solution of Eq.(33) by separation of variables is obtained by again assuming that each

temperature distribution is the procluct of t~vo functions, each of which involves only one ,

of the independent variables. That is, if .f(z) is a function of ~ only and if g(t) is a function

of t only, then the temperature clistribution, .X, can be expressed as

X(i, x) = f(.1$) . g(f) (35)

When this is substituted into Eq. (33) and the resulting ordinary differential equation is

solved, one obtains the following general solution

A’c’t[4s2@2) + Bcm(xz)l.x-(i,x) = e- .

The constant A, B and A are evaluated using the pertaining initial

(36)

and boundary condi-

tions. Upon substitution, one will obtain the following temperature clistribution in the z

direction

X(i, x) = e-A2ats2n(Ax) o<z<L’, t>o (37)

In the above expression A is constant and equal to T/L.

Repeating the same procedure for Eq. (34), one obtains a similar solution for Y, i.e.,

Hence, using Eq.(32),

to be:

Y“(t, y) = e-A20tsi7~(Ay) O<y<L,tZO (38)

the temperature distribution in a cross section of the bar is derived

u(t, z,y) = e –2(7r/~)2@~Sitl(rX/L) . sin(~y/L) (39)

This analytical expression will be used to valiclate the numerical results of the implemen-

tation of our time parallel algorithm on the Intel Touchstone Delta supercomputer.

5. Implementation Results

In order to evaluate the potential of our proposed time parallelism paradigm, a FORTRAN

computer code for solving the 2-D heat ecluation [i.e., Eels. (29-31)] was written and

implemented on the Intel Touchstone Delta multi processor. The numeric nodes of the

Delta are i860 microprocessors operating at 40 MHz. These nodes are rated at 33 MIPS,

80(peak) single precision MFLOPS, and 60 (peak) double precision MFLOPS.

12

.

.

On the Delta machine, processors are allocated in terms of a rectangular mesh. In our

implementation, a scluare partition was generally usecl, in which the number of columns

and rows was simultaneously variecl from 1 to 10. For the case of 120 processors, a 10x 12

rectangle was employed.

The number of time steps 1{ recluired for

processors in the following manner. The pth

our calculation was divicled among the NP

processor calculates the kth time step, where

k=p~nlxNP, O < m < l</NP, and k < I<.

For the actual simulations, we selected the Crank-F? icholson scheme, i.e. we set /3 = 0.5,

and assumed a thermal diffusivity of 0.1. The spatial mesh size and the time step size

were chosen as h = .A1 = AY = 0.1 ancl At = 10–~ respectively. In order to enable a

more accurate measurement of the computation time at each processor on one hand, and

to allow for potential inaccuracies stemming from the numerical schemes to accumulate,

we report results after 5000 iterations, i.e., 0.5 second after experiment start up.

It is important to remember that the bar thickness, L, was divided into N + 1 equi-length

parts. This results in Al + 2 equidistant gricl pc)ints in each spatial clirection (see Fig. 2).

However, boundary points have a fixed value in this problem. Therefore, there are only N

points in each spatial direction at which a computation is performed.

On the Intel Delta, each node program starts by reading the number of mesh points in

each spat ial direction. Then a file is opened, which is shared between all nodes, and used

for recording. the initialization and computation time of each node. The values of the

parameters a, ~, At, h and 1{ are initializecl, the initial temperature distribution and its

transform are calculated, and the values of D! ancl Bt, where Bt = D~ and 1 < L < N2,

are computed, This initialization time is a constant, function of the spatial resolution, N,

and is measured to be on the average 12, 48, 190, 756 milliseconds, per node, for N equal

to 15, 31, 63, 127 respectively,

Following initialization, each processor p first calculates the temperature distribution of

the p ‘h time step using Eq. (Z) and the D values currently in memory. Then, the value

13

,

.

of D at each node is updated according to the formula

De= Dex Bf I<c<iw—

yielding the quantities required for computing the temperature at the (p + NP)t~ time

step. After processing O(l{/NP) time steps, the measured times for initialization and

computation from each node are written onto the common file.

Table 1 shows the total (i.e., initialization plus computation) time, in milliseconds, for four

different cases involving different mesh sizes. The first row of this table displays the time

achieved with the best serial algorithm (see Section 3) using a single node of the Delta

machine. The other rows present, the average time per nocle, calcula.tecl according to

1
~= hrp

—— x‘a “e – ~Tp ‘p
JI=l

where 7P is the total time posted for processor p. The speedup (i.e., best serial algorithm

processing time cli~~ideclby ~.u,) achieved as a function of the number of nodes is displayed

in Fig. 4.

We observe that, eventhough the serial algorithm has theoretically a lower computational

complexity than the time parallel one, it actually recluirecl more time. This is due to the

fact that the structure of the time parallel algorithm takes full advantage of the vector

processing capability of the i860 node, which results in a lower overall computation time.

5. Conclusions

We have presented a novel time parallel algorithm for the solution of linear parabolic partial

differential equaticms. The basic idea is to use a transformation involving the eigenvalue-

eigenvector decomposition of coefficient matrices underlying the discretized form of the

PDE. Since these matrices are involved in the time stepping iterations, the resulting diag-

onalization yields a decoupling of the iterations, which in turn allows the solution for all

the time steps to be computed in parallel. Because of their highly decoupled structure,

our time parallel algorithms can be efficiently implemented on emerging massively paralIel

MIMD architectures with a minimum of communication and synchronization overhead.

14

Our method has been implemented on the Intel Touchstone Delta supercomputer. For

illustrative purposes, we have clemonstratecl the potential capabilities of our approach on

a two-dimensional heat equation. Our illll>lelllelltatioll shows that the time parallel algo-

rithms do indeed achieve maximum parallelism in time. In particular, we were able to

reach a linear speedup factor of 120 using 120 processors. Our results clearly indicate

that, in contradistinction to the general assumption of inherent sec~uentiality for marching

in time, the iterations in Eel. (3) can be more efficiently parallelized in time rather than in

space. As a result, even with a limited number of processors, it is more efficient to exploit

parallelism in time than in space.

Acknowledgments

This research was carriecl out at the Center for Space hlicroelectronics Technology, Jet

Propulsion Laboratory, California Institute of Technology. Support for the work came

from the Office of .Advanced Concepts ancl Technology of the National Aeronautics and

Space Administration, ancl frcnn the Office of Basic Energy. Sciences of the US Department

of Energy through an agreement with NA S.4.

References

1.

9
e.

3.

4.

Whithman G. B., Linear and Nonlinea~ Waves, John Wiley and Sons, New York, NY

(1974).

Fijany A. and N. Toomarian, “Fast Time and Space Parallel Algorithms for Solution

of Parabolic Partial Differential Ecluations”, Submitted to IEEE Trans. on Parallel

and Disi. Sysi. (January 1993).

Fijany A., “Tinle Parallel .41gorithnls fcm ScJution of Linear Parabolic PDEs”, Pro-

ceedings of the 1993 International Conference on Parallel Processing (in press, 1993).

Fijany A., “Time Parallel .41gorithn~s for Solution of Linear Parabolic PDEs,” Engi-

neering Memorandum, Ehfi 347-93-002, Jet Propulsion Laboratory (February 1993).

15

*

5. Fijany A., J. Barhen and N. Toomarian “ On the Structure of Tin~e-Parallel Algorithms

for Solution of Linear Evolutionary Partial Differential Ecluations,” in preparation.

6. Lelarasmee E., A. Ruheli, and A. L. Sangiovanni-Vincentelli, “The Waveform Re-

laxation Method for the Time Domain Analysis of Large Scale Integrated Circuits,”

IEEE Trans. Comp(lter-Aided Design, 1, 131-145 (19S2).

7. Saltz J. H. and V. K. Nail, “Towards Developing Robust Algorithms for Solving Partial

Differential Equations on MIMD Machines,” Parallel Computing, 6, 19-44 (1988).

8. Wromble D. E., “A Time-Stepping .Algorit hm for Parallel Computers,” SIAM J. Sci.

Stat. Compute, 11 (5), S24-837 (1990).

9. Haclibusch W., “Parabolic hlultigrid hfethocis,” Proc, 6th Int. Symp. on Computing

Methods in Applied Sciences and Engineering (December 1983).

10. Horton G. and R. Knirsch, “A Tin~e-Parallel hJultigrid-Extrapolation Method for

Parabolic Partial Differential Equations,” Parallel Computing, 18, 21-29 (1992).

11. Strang G. and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall,

Englewood Cliffs, NJ (1973).

12. Chapman, A. J., Heat Transfer, Macmillan, New York, NY (1967).

13. Barnett S., Matrices: Methods and Applications, Clarendon Press, Oxford, UK (1990).

14. Varga R. S., Matrix Iterative Analysis, Prentice-Hall, Englewoocl Cliffs, NJ (1962).

15. Swarztrauber P. N. and R. A, Sweet, “Efficient Subroutines for the Solution of General

Elliptic and Parabolic Partial Differential Eclua.tions”, Atmospheric Technology, 79-81

(September 1973).

16

,

16. Hockney R. and C. Jesshope, PaTallel CompuieTs. .4danl Hilger Ltd., London, UK

(1981). ‘

17. Buzbee B., G. Golub, and C. NTielson, “On Direct Methocls for Solving Poisson Equa-

tions,” SIAM J. Numer. Anal., 7, 627-656 (1970).

17

#

Figure Caption

Fig. 1: Structure of the matrix M obtained using a five point numerical

discretization scheme. Elements not shown are zero.

Fig. 2: A two-dimension uniform ,gricl representing the spatial domain.

Fig. 3: Structure of the permutation matrix P. Elements not shown are

zero.

Fig. 4: Speedup of the time-parallel algorithm as function of the number

of processors for clifferent mesh size.

Table 1: Total execution time, in milliseconcls, for different mesh sizes

and numl)er of processors employed.

18

?
11
41

. . .
. . .

141

1

1
1

. neach
block
NXN

+

4
-41 .

. . . .
,..

1-41 .
1-4 . I

4 “
.

. .

-4 1
l-. 1-L 1

. ,..
.

1-41 .. 1-4
1

1 141
. .,.

. . . .
1-41 1

4 N blocks ~

I
blocks

Fig. 1: Structure ofmatnx Mobtained using a five points
numerical diseretizationscheme. Elements not shown are zero.

YN+l

YN

Yi

Y
1

+=’. t-

—— —Y0 X()x, x m

J

Fig. 2: A two-dimension uniform grid representing the spatial domain.

,V4
.,

.

.

.

1

.

1

1

b

. . .

..0

. . .

. . .

. . .

Nblocks .

each
block
NXN

1

.

.

1

1

1

.

.

.

Fig. 3: Structure of the permutation matrix P. Elements not shown are zero

150

120

90

30

= 63

= 31

0
0 30 60 90 120 150

Number of processor

Fig. 4: Speedup of the time-parallel algorithm as function of the number
of processors for different mesh size.

.

Table 1: Total execution time, in milliseconds, for differentmesh sizes and I
processors employed ,

Number of Dimension of the Mesh
Processors 15 31 63 127

1 30364 119453 473665 1898395
1 31208 118109 429817 1693977

4 7811 28642 107595 424074

9 3478 12620 47925 188885

16 1962 7119 27040 106576

25 1260 4574 17373 68475

36 879 3191 12123 47784

49 649 2357 8957 35307

64 500 1816 6903 27210
81 389 1447 5500 21680

100 324 1181 4491 17703
120 272 992 3774 14877

umberof

